Interaction of the interferon-induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by unique domains: implications for kinase regulation.
نویسندگان
چکیده
Expression of the double-stranded RNA-activated protein kinase (PKR) is induced by interferons, with PKR activity playing a pivotal role in establishing the interferon-induced antiviral and antiproliferative states. PKR is directly regulated by physical association with the specific inhibitor, P58IPK, a cellular protein of the tetratricopeptide repeat (TPR) family, and K3L, the product of the corresponding vaccinia virus gene. P58IPK and K3L repress PKR activation and activity. To investigate the mechanism of P58IPK- and K3L-mediated PKR inhibition, we have used a combination of in vitro and in vivo binding assays to identify the interactive regions of these proteins. The P58IPK-interacting site of PKR was mapped to a 52-amino-acid aa segment (aa 244 to 296) spanning the ATP-binding region of the protein kinase catalytic domain. The interaction with PKR did not require the C-terminal DNA-J homology region of P58IPK but was dependent on the presence of the eukaryotic initiation factor 2-alpha homology region, mapping to the 34 aa within the sixth P58IPK TPR motif. Consistent with other TPR proteins, P58IPK formed multimers in vivo: the N-terminal 166 aa were both necessary and sufficient for complex formation. A parallel in vivo analysis to map the K3L-binding region of PKR revealed that like P58IPK , K3L interacted exclusively with the PKR protein kinase catalytic domain. In contrast, however, the K3L-binding region of PKR was localized to within aa 367 to 551, demonstrating that each inhibitor bound PKR in unique, nonoverlapping domains. These data, taken together, suggest that P58IPK and K3L may mediate PKR inhibition by distinct mechanisms. Finally, we will propose a model of PKR inhibition in which P58IPK or a P58IPK complex binds PKR and interferes with nucleotide binding and autoregulation, while formation of a PKR-K3L complex interferes with active-site function and/or substrate association.
منابع مشابه
Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملMC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappaB activation and apoptosis induced by PKR.
Molluscum contagiosum virus (MCV) is a human poxvirus that causes abnormal proliferation of epithelial cells. MCV encodes specific molecules to control host defences, such as MC159L, which as previously shown prevents apoptosis induced by death receptors. However, unlike most poxviruses, MCV lacks a homologue to the E3L and K3L proteins of vaccinia virus, which are involved in the control of th...
متن کاملProtein kinase PKR mutants resistant to the poxvirus pseudosubstrate K3L protein.
As part of the mammalian cell innate immune response, the double-stranded RNA activated protein kinase PKR phosphorylates the translation initiation factor eIF2alpha to inhibit protein synthesis and thus block viral replication. Poxviruses including vaccinia and smallpox viruses express PKR inhibitors such as the vaccinia virus K3L protein that resembles the N-terminal substrate-targeting domai...
متن کاملDouble-stranded RNA-independent dimerization of interferon-induced protein kinase PKR and inhibition of dimerization by the cellular P58IPK inhibitor.
The interferon (IFN)-induced, double-stranded RNA-activated protein kinase (PKR) mediates the antiviral and antiproliferative actions of IFN, in part, via its translational inhibitory properties. Previous studies have demonstrated that PKR forms dimers and that dimerization is likely to be required for activation and/or function. In the present study we used multiple approaches to examine the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 16 8 شماره
صفحات -
تاریخ انتشار 1996